skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Jaworski, Daniel"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The electrical properties of the entropy stabilized oxides: Zr6Nb2O17, Zr6Ta2O17, Hf6Nb2O17and Hf6Ta2O17were characterized. The results and the electrical properties of the products (i.e. ZrO2, HfO2, Nb2O5and Ta2O5) led us to hypothesize the A6B2O17family is a series of mixed ionic-electronic conductors. Conductivity measurements in varying oxygen partial pressure were performed on A6Nb2O17and A6Ta2O17.The results indicate that electrons are involved in conduction in A6Nb2O17while holes play a role in conduction of A6Ta2O17. Between 900 °C–950 °C, the charge transport in the A6B2O17system increases in Ar atmosphere. A combination of DTA/DSC and in situ high temperature X-ray diffraction was performed to identify a potential mechanism for this increase. In-situ high temperature X-ray diffraction in Ar does not show any phase transformation. Based on this, it is hypothesized that a change in the oxygen sub-lattice is the cause for the shift in high temperature conduction above 900 °C–950 °C. This could be:(i)Nb(Ta)4+- oxygen vacancy associate formation/dissociation,(ii)formation of oxygen/oxygen vacancy complexes(iii)ordering/disordering of oxygen vacancies and/or(iv)oxygen-based superstructure commensurate or incommensurate transitions. In-situ high temperature neutron diffraction up to 1050 °C is required to help elucidate the origins of this large increase in conductivity. 
    more » « less